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Spontaneous Symmetry Breaking is one of the fundamental phenomena in field theory and condensed
matter systems. Initially, a system in a ground state respects symmetry. Some changes in the system
could lead to new accessible ground states which do not respect the original symmetry present in
the system. We say the symmetry is broken. This loss of symmetry has consequences - a particle’s
spectrum in the newly found vacuum could be entirely different than the spectrum in the original
unbroken state.

I. SYMMETRY BREAKING: A CLASSICAL EXAMPLE

A classical example of symmetry breaking would be a stick that buckles under load. The process directly connects
to the field theory. A stick is erect and unbuckled under zero load. What is the symmetry of the system? - It is
rotationally invariant around the axis of the stick. If now the load is slowly increased the stick will eventually buckle
at a critical value. The symmetry present in the original state is now broken.

I would like to add a few things here. Initially, there are fluctuations in the force applied. It’s just that those
fluctuations are too small to cause any change in the system. The system is invariant in its lowest energy configuration.
This will be true as long as those fluctuations are small (because the load is small). Now as the load grows fluctuations
also grow and that results in the buckling. The point to note here is that after a critical load value an infinite number
of lower energy states appear and the system goes into one of them. The rotational symmetry of the system is lost
and all those lower energy states are related to each other by rotation. We will see parallels of this simple example in
all the systems we study in this report.

II. SYMMETRY BREAKING IN FERROMAGNETS

Figure of the left depicts depicts magnetic moments when T > Tc, and figure on right depicts spins when T < Tc

A ferromagnet has a large number of magnetic moments. These moments are randomly aligned at room temperature

as shown in the figure. 1 If we calculate the Magnetization (Magnetic dipoles per unit volume, M⃗) of the system2,
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1 Actually the situation is a little more complex: moments tend to align themselves to the neighboring moments, so a naturally low-energy
state is when all the moments are in the same direction. But this happens in small patches in the magnet. A patch’s magnetization
could be in a certain direction and another’s could be in some other’s direction. Our analysis still works because there are a large
number of these patches aligned in all sorts of directions

2 We take the spherical average of magnetic dipole of a volume in the material such that the Radius of the sphere is very large compared
to the dimension of the patches
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we will get zero. since the average number of magnetic moments aligned in a particular direction is equal to the
average number of magnetic moments aligned in a completely opposite direction. There is a symmetry present in
the system - Magnetization is unchanged with the 180 flip of all the moments. It is experimentally known that as
the temperature is lowered, and after a critical value Tc all the moments are aligned in one of the two configurations
possible; magnetization ±M0, and the original symmetry (S −→ −S, for all i) of the system is lost.

F = A0 +A2M
2 +A4M

4 + ... (1)

We could write the free energy (F = U−TS) of the system in the powers of M , with the assumption that the first few
terms in the series give a good approximation of the true value. If M −→ −M then F → F . This is true in the range
T > Tc. To understand how the system changes when the temperature is lowered let A2 in the expansion be such that
it changes sign as T < Tc or A2 is proportional to (T − Tc). Now the expression becomes F = A0 −A2M

2 +A4M
4...

for (T < Tc). If we plot F in the two limits; T > Tc, and T < Tc we see that in the case T < Tc the system has
two available vacuums, and the system can now move into either one of them with the new minimum at ±M0.The
original symmetry present is robbed from the system.

Free energy before and after Symmetry Breaking

CAVEATS: 1. If we considered this system quantum mechanically there is a probability for transitioning of the
system from one minimum to another minimum. 2. When there is an infinite number of degrees of freedom like in a
field theory tunneling then tunneling probability is suppressed and SSB can happen. 3. This is just an example to
show how symmetry is lost with newly available vacuums. We are not expecting any massless excitations, as we will
later see that for massless excitations there should be continuous symmetry present.

III. CONTINUOUS SPONTANEOUS SYMMETRY BREAKING AND GOLDSTONE THEOREM

Now we discuss a slightly non-trivial case of continuous symmetry breaking in field theory. I begin with writing a
Lagrangian, which is the sum of the two scalar fields Lagrangian with the interaction as shown. Note that the mass
term in this Lagrangian is flipped to account for the breaking of symmetry.

L =
1

2
[(∂µϕ1)

2 + (∂µϕ2)
2] +

µ2

2
[ϕ2

1 + ϕ2
2]−

λ

4
[ϕ2

1 + ϕ2
2] (2)

This Lagrangian is symmetric under the transformation shown below. We say that Lagrangian is symmetric under
rotations in ϕ1 − ϕ2 plane with infinite minima or vacuams at every value of ϕ1 and ϕ2 that follows the equation

ϕ2
1 + ϕ2

2 = 6µ2

λ . [
ϕ1

ϕ2

]
→

[
cos θ − sin θ
sin θ cos θ

] [
ϕ1

ϕ2

]
(3)



3

V (ϕ1, ϕ2) = −µ
2 [ϕ

2
1 + ϕ2

2] +
λ
4 [ϕ

2
1 + ϕ2

2]

The potential when drawn looks like a Mexican hat. An important point to note here is that symmetry is still present
in this equation, it is what I plan to do next that will break the symmetry - we will look for excitations in the fields
3 The way we do is by first choosing a vacuum among infinite vacuums. 4 We chose ϕ1 =

√
6µ2

λ , and ϕ2 = 0. Now

we expand the potential V around this chosen vacuum with ϕ −→ ϕ−
√

6µ2

λ . Let ϕ0 =
√

6µ2

λ

We are expanding about a vacuum here

V (ϕ1 − ϕ0, ϕ2 − 0) = V (ϕ0, 0) +
∂V (ϕ0, 0)

∂ϕ1
(ϕ1 − ϕ0) +

∂V (ϕ0, 0)

∂ϕ2
(ϕ2 − 0) (4)

+
1

2
[
∂2V

∂ϕ2
1

(ϕ1 − ϕ0)
2 +

∂2V

∂ϕ2
2

(ϕ2 − ϕ0)
2 + 2

∂2V (ϕ0, 0)

∂ϕ1ϕ2
(ϕ1 − ϕ0)(ϕ2 − 0)] + ... (5)

where on substitution of the derivatives and defining ϕ1′ = ϕ1 − ϕ0, and ϕ2′ = ϕ2 we get:

L =
1

2
[(∂µϕ

′
1)

2 + (∂µϕ
′
2)

2] + µ2ϕ2
1
′ +O(3) (6)

We started with equation 2 and ended up with equation 6. What to make of this change? We know that term in
the square in fields is called a mass term because square root of the coefficient of that term gives the mass of the
excitation i.e the mass of the particle associated with that field.

Question: What happened to the mass of the particle and how to interpret it?
Answer: On comparison of the two Lagrangians we see that the mass of the excitations of ϕ1 field (particles) about

the new vacuum is
√
2µ instead of the original µ, and there is no excitation of the ϕ2 field about this new vacuum.

We observe that because of symmetry breaking mass of the ϕ1 field’s particle is now
√
2µ and ϕ2 particle’s mass is zero.

One way to think about what happened here is to look at the potential of this Lagrangian. There is a gutter that is
formed from the locus of points of the minima. The expansion that resulted in equation 6 meant small movements
along ϕ1 and ϕ2 directions, but from the figure of the potential, the expansion along ϕ1 amount to movement along
the radial direction and hence that movement experiences ”resistance” and therefore we have the mass for ϕ1 field,
whereas any movement along ϕ2 results the movement along the gutter remaining at the same potential, hence no
”resistance”, so no mass for ϕ2 after symmetry breaking.

3 Since excitations in the fields are the particles and we want to look at what dispersion relation looks like for vacuum excitation. And
we will compare the dispersion relations of the excitation before and after the symmetry breaking

4 We can always do that since all those vacuums are identical
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We can condense what we accomplished here into a theorem: GOLDSTONE THEOREM: If a continuous sym-
metry is broken, it will result in massless excitation called Goldstone Mode, and the massless particle is called
Goldstone Boson

IV. SSB IN COMPLEX SCALAR FIELDS WITH GLOBAL AND LOCAL SYMMETRIES (HIGGS
MECHANISM)

The plan for this section is to see two examples of symmetry breaking: first, we will see how symmetry breaking plays
out in a theory with global symmetry, and later in a local symmetry or Higgs mechanism.

Consider a Lagrangian with a positive mass term and global symmetry.

L = (∂µΨ)†(∂µΨ) + µ2Ψ†Ψ− λ(Ψ†Ψ)2 (7)

This is symmetric under a global transformation Ψ −→ Ψexp(iα) which in polar coordinates looks like

Ψ(x) = ρ(x) exp(iθ(x))

which translates to symmetry under ρ −→ ρ, and θ −→ θ + α. The Lagrangian in polar coordinates is

L = (∂µρ)
2 + ρ2(∂µθ)2 − λ(ρ)4 + µ2(ρ)2 (8)

Going through the same procedure we get the lagrangian (ignoring interaction) which is expanded about the point

ρ0 =
√
µ2/2λ, and θ0 = 0

L = (∂µρ
′)2 − 2µ2ρ′2 + µ2ρ2 − 4(

µ2λ

2
)

1
2 ρ′3 +

µ2λ

2
(∂µθ′)2 + ... (9)

On a direct comparison of equations 8 and 9, we see that the expansion along the gutter resulted in mass excitations
of θ fields, and expansion along the radius results in excitation in ρ fields, but with mass

√
2µ

Now let us demand that our Lagrangian respects local symmetry Ψ −→ Ψα(x). But if you make that transformation
you’d find that the Lagrangian is not symmetric. The consequence of the demand is that we would have to introduce
a gauge field to compensate for the local variation of the field. We do this by including gauge fields Aµ using a
covariant derivative which is defined as Dµ = ∂µ + iqAµ(x) where Aµ transforms as Aµ −→ Aµ − i

q∂µ

Our Lagrangian is

L = (∂µΨ
† − iqAµΨ†)(∂µΨ+ iqAµΨ) + µ2Ψ†Ψ− λ(Ψ†Ψ)2 − 1

4
FµνF

µν (10)

Let us note important features of this Lagrangian. In addition to what is described above, we can see that the Ψ field
is massive with mass µ, and Aµ field is massless. Now as in the case of global symmetry we use the polar coordinates
Ψ(x) = ρ(x) exp(iθ(x)). Now we can do a variable change such that C = Aµ + 1

q∂µθ, and this is also gauge invariant.

In terms of this substitution, Lagrangian becomes:
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L = (∂µρ)
2 + ρ2q2C2 − λρ4 − 1

4
FµνFµν + µ2ρ2 (11)

where Fµν = ∂µAν − ∂νAµ

Now we do the usual procedure of breaking the symmetry by expanding around a chosen vacuum. We choose

ρ0 =
√

µ2

2λ , and θ0 = 0. With change of variable ρ = ρ0 + ξ we have with M = q
√

µ2

λ

L =
1

2
(∂µξ)2 − µ2ξ2 −

√
λµξ3 − λ

4
ξ4 − 1

4
FµνFµν +

M2

2
C2 + q2

µ2

λ

1
2

ξC2 +
1

2
q2ξ2C2 + ... (12)

As we have done previously we compare the Lagrangians before and after symmetry breaking. On comparing equa-
tions 11 and 12 we see:
1. The mass of ξ field excitation is still

√
2µ. However, initially we had Ψ and Ψ† as massive scalar excitations.

2. Now we have mass excitations in the Cµ field. Cµ is a massive gauge field. It has three polarization hence the
excitations are spin-1 massive particles. Originally Aµ was massless and only had two polarizations.
3. θ field is completely missing.

we can also note that the degrees of freedom are conserved, since before and after the SSB we have the same number
of modes.


